SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Ahlqvist Emma) ;pers:(Mansour Aly Dina);srt2:(2021)"

Search: WFRF:(Ahlqvist Emma) > Mansour Aly Dina > (2021)

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Bennet, Louise, et al. (author)
  • Adult-onset diabetes in Middle Eastern immigrants to Sweden : Novel subgroups and diabetic complications—The All New Diabetes in Scania cohort diabetic complications and ethnicity
  • 2021
  • In: Diabetes/Metabolism Research and Reviews. - : Wiley. - 1520-7552 .- 1520-7560. ; 37:6
  • Journal article (peer-reviewed)abstract
    • Background: Middle Eastern immigrants to Europe represent a high risk population for type 2 diabetes. We compared prevalence of novel subgroups and assessed risk of diabetic macro- and microvascular complications between diabetes patients of Middle Eastern and European origin. Methods: This study included newly diagnosed diabetes patients born in Sweden (N = 10641) or Iraq (N = 286), previously included in the All New Diabetes in Scania cohort. The study was conducted between January 2008 and August 2016. Patients were followed to April 2017. Incidence rates in diabetic macro- and microvascular complications were assessed using cox-regression adjusting for the confounding effect of age at onset, sex, anthropometrics, glomerular filtration rate (eGFR) and HbA1c. Findings: In Iraqi immigrants versus native Swedes, severe insulin-deficient diabetes was almost twice as common (27.9 vs. 16.2% p < 0.001) but severe insulin-resistant diabetes was less prevalent. Patients born in Iraq had higher risk of coronary events (hazard ratio [HR] 1.84, 95% CI 1.06–3.12) but considerably lower risk of chronic kidney disease (CKD) than Swedes (HR 0.19; 0.05–0.76). The lower risk in Iraqi immigrants was partially attributed to better eGFR. Genetic risk scores (GRS) showed more genetic variants associated with poor insulin secretion but lower risk of insulin resistance in the Iraqi than native Swedish group. Interpretation: People with diabetes, born in the Middle East present with a more insulin-deficient phenotype and genotype than native Swedes. They have a higher risk of coronary events but lower risk of CKD. Ethnic differences should be considered in the preventive work towards diabetes and its complications.
  •  
2.
  • Mansour Aly, Dina, et al. (author)
  • Genome-wide association analyses highlight etiological differences underlying newly defined subtypes of diabetes
  • 2021
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 53, s. 1534-1542
  • Journal article (peer-reviewed)abstract
    • Type 2 diabetes has been reproducibly clustered into five subtypes with different disease progression and risk of complications; however, etiological differences are unknown. We used genome-wide association and genetic risk score (GRS) analysis to compare the underlying genetic drivers. Individuals from the Swedish ANDIS (All New Diabetics In Scania) study were compared to individuals without diabetes; the Finnish DIREVA (Diabetes register in Vasa) and Botnia studies were used for replication. We show that subtypes differ with regard to family history of diabetes and association with GRS for diabetes-related traits. The severe insulin-resistant subtype was uniquely associated with GRS for fasting insulin but not with variants in the TCF7L2 locus or GRS reflecting insulin secretion. Further, an SNP (rs10824307) near LRMDA was uniquely associated with mild obesity-related diabetes. Therefore, we conclude that the subtypes have partially distinct genetic backgrounds indicating etiological differences.
  •  
3.
  • Simonsen, Johan R, et al. (author)
  • Genetic factors affect the susceptibility to bacterial infections in diabetes
  • 2021
  • In: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 11
  • Journal article (peer-reviewed)abstract
    • Diabetes increases the risk of bacterial infections. We investigated whether common genetic variants associate with infection susceptibility in Finnish diabetic individuals. We performed genome-wide association studies and pathway analysis for bacterial infection frequency in Finnish adult diabetic individuals (FinnDiane Study; N = 5092, Diabetes Registry Vaasa; N = 4247) using national register data on antibiotic prescription purchases. Replication analyses were performed in a Swedish diabetic population (ANDIS; N = 9602) and in a Finnish non-diabetic population (FinnGen; N = 159,166). Genome-wide data indicated moderate but significant narrow-sense heritability for infection susceptibility (h2 = 16%, P = 0.02). Variants on chromosome 2 were associated with reduced infection susceptibility (rs62192851, P = 2.23 × 10-7). Homozygotic carriers of the rs62192851 effect allele (N = 44) had a 37% lower median annual antibiotic purchase rate, compared to homozygotic carriers of the reference allele (N = 4231): 0.38 [IQR 0.22-0.90] and 0.60 [0.30-1.20] respectively, P = 0.01). Variants rs6727834 and rs10188087, in linkage disequilibrium with rs62192851, replicated in the FinnGen-cohort (P < 0.05), but no variants replicated in the ANDIS-cohort. Pathway analysis suggested the IRAK1 mediated NF-κB activation through IKK complex recruitment-pathway to be a mediator of the phenotype. Common genetic variants on chromosome 2 may associate with reduced risk of bacterial infections in Finnish individuals with diabetes.
  •  
4.
  • Slieker, Roderick C, et al. (author)
  • Distinct Molecular Signatures of Clinical Clusters in People with Type 2 Diabetes : an IMIRHAPSODY Study
  • 2021
  • In: Diabetes. - : American Diabetes Association. - 1939-327X .- 0012-1797. ; 70:11, s. 2683-2693
  • Journal article (peer-reviewed)abstract
    • Type 2 diabetes is a multifactorial disease with multiple underlying aetiologies. To address this heterogeneity a previous study clustered people with diabetes into five diabetes subtypes. The aim of the current study is to investigate the aetiology of these clusters by comparing their molecular signatures. In three independent cohorts, in total 15,940 individuals were clustered based on five clinical characteristics. In a subset, genetic- (N=12828), metabolomic- (N=2945), lipidomic- (N=2593) and proteomic (N=1170) data were obtained in plasma. In each datatype each cluster was compared with the other four clusters as the reference. The insulin resistant cluster showed the most distinct molecular signature, with higher BCAAs, DAG and TAG levels and aberrant protein levels in plasma enriched for proteins in the intracellular PI3K/Akt pathway. The obese cluster showed higher cytokines. A subset of the mild diabetes cluster with high HDL showed the most beneficial molecular profile with opposite effects to those seen in the insulin resistant cluster. This study showed that clustering people with type 2 diabetes can identify underlying molecular mechanisms related to pancreatic islets, liver, and adipose tissue metabolism. This provides novel biological insights into the diverse aetiological processes that would not be evident when type 2 diabetes is viewed as a homogeneous disease.
  •  
5.
  • Slieker, Roderick C, et al. (author)
  • Replication and cross-validation of type 2 diabetes subtypes based on clinical variables : an IMI-RHAPSODY study
  • 2021
  • In: Diabetologia. - : Springer Science and Business Media LLC. - 0012-186X .- 1432-0428. ; 64:9, s. 1982-1989
  • Journal article (peer-reviewed)abstract
    • Aims/hypothesis: Five clusters based on clinical characteristics have been suggested as diabetes subtypes: one autoimmune and four subtypes of type 2 diabetes. In the current study we replicate and cross-validate these type 2 diabetes clusters in three large cohorts using variables readily measured in the clinic. Methods: In three independent cohorts, in total 15,940 individuals were clustered based on age, BMI, HbA1c, random or fasting C-peptide, and HDL-cholesterol. Clusters were cross-validated against the original clusters based on HOMA measures. In addition, between cohorts, clusters were cross-validated by re-assigning people based on each cohort’s cluster centres. Finally, we compared the time to insulin requirement for each cluster. Results: Five distinct type 2 diabetes clusters were identified and mapped back to the original four All New Diabetics in Scania (ANDIS) clusters. Using C-peptide and HDL-cholesterol instead of HOMA2-B and HOMA2-IR, three of the clusters mapped with high sensitivity (80.6–90.7%) to the previously identified severe insulin-deficient diabetes (SIDD), severe insulin-resistant diabetes (SIRD) and mild obesity-related diabetes (MOD) clusters. The previously described ANDIS mild age-related diabetes (MARD) cluster could be mapped to the two milder groups in our study: one characterised by high HDL-cholesterol (mild diabetes with high HDL-cholesterol [MDH] cluster), and the other not having any extreme characteristic (mild diabetes [MD]). When these two milder groups were combined, they mapped well to the previously labelled MARD cluster (sensitivity 79.1%). In the cross-validation between cohorts, particularly the SIDD and MDH clusters cross-validated well, with sensitivities ranging from 73.3% to 97.1%. SIRD and MD showed a lower sensitivity, ranging from 36.1% to 92.3%, where individuals shifted from SIRD to MD and vice versa. People belonging to the SIDD cluster showed the fastest progression towards insulin requirement, while the MDH cluster showed the slowest progression. Conclusions/interpretation: Clusters based on C-peptide instead of HOMA2 measures resemble those based on HOMA2 measures, especially for SIDD, SIRD and MOD. By adding HDL-cholesterol, the MARD cluster based upon HOMA2 measures resulted in the current clustering into two clusters, with one cluster having high HDL levels. Cross-validation between cohorts showed generally a good resemblance between cohorts. Together, our results show that the clustering based on clinical variables readily measured in the clinic (age, HbA1c, HDL-cholesterol, BMI and C-peptide) results in informative clusters that are representative of the original ANDIS clusters and stable across cohorts. Adding HDL-cholesterol to the clustering resulted in the identification of a cluster with very slow glycaemic deterioration. Graphical abstract: [Figure not available: see fulltext.]
  •  
6.
  • Strausz, Satu, et al. (author)
  • Genetic analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic health
  • 2021
  • In: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 57:5, s. 1-17
  • Journal article (peer-reviewed)abstract
    • There is currently limited understanding of the genetic aetiology of obstructive sleep apnoea (OSA). We aimed to identify genetic loci associated with OSA risk, and to test if OSA and its comorbidities share a common genetic background. We conducted the first large-scale genome-wide association study of OSA using the FinnGen study (217 955 individuals) with 16 761 OSA patients identified using nationwide health registries. We estimated 0.08 (95% CI 0.06.0.11) heritability and identified five loci associated with OSA (p<5.0×10-8): rs4837016 near GAPVD1 (GTPase activating protein and VPS9 domains 1), rs10928560 near CXCR4 (C-X-C motif chemokine receptor type 4), rs185932673 near CAMK1D (calcium/calmodulindependent protein kinase ID) and rs9937053 near FTO (fat mass and obesity-associated protein; a variant previously associated with body mass index (BMI)). In a BMI-adjusted analysis, an association was observed for rs10507084 near RMST/NEDD1 (rhabdomyosarcoma 2 associated transcript/NEDD1 γ-tubulin ring complex targeting factor). We found high genetic correlations between OSA and BMI (rg=0.72 (95% CI 0.62-0.83)), and with comorbidities including hypertension, type 2 diabetes, coronary heart disease, stroke, depression, hypothyroidism, asthma and inflammatory rheumatic disease (rg>0.30). The polygenic risk score for BMI showed 1.98-fold increased OSA risk between the highest and the lowest quintile, and Mendelian randomisation supported a causal relationship between BMI and OSA. Our findings support the causal link between obesity and OSA, and the joint genetic basis between OSA and comorbidities.
  •  
7.
  • Wu, Chuanyan, et al. (author)
  • Elevated circulating follistatin associates with an increased risk of type 2 diabetes
  • 2021
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 12, s. 1-10
  • Journal article (peer-reviewed)abstract
    • The hepatokine follistatin is elevated in patients with type 2 diabetes (T2D) and promotes hyperglycemia in mice. Here we explore the relationship of plasma follistatin levels with incident T2D and mechanisms involved. Adjusted hazard ratio (HR) per standard deviation (SD) increase in follistatin levels for T2D is 1.24 (CI: 1.04-1.47, p < 0.05) during 19-year follow-up (n = 4060, Sweden); and 1.31 (CI: 1.09-1.58, p < 0.01) during 4-year follow-up (n = 883, Finland). High circulating follistatin associates with adipose tissue insulin resistance and non-alcoholic fatty liver disease (n = 210, Germany). In human adipocytes, follistatin dose-dependently increases free fatty acid release. In genome-wide association study (GWAS), variation in the glucokinase regulatory protein gene (GCKR) associates with plasma follistatin levels (n = 4239, Sweden; n = 885, UK, Italy and Sweden) and GCKR regulates follistatin secretion in hepatocytes in vitro. Our findings suggest that GCKR regulates follistatin secretion and that elevated circulating follistatin associates with an increased risk of T2D by inducing adipose tissue insulin resistance.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view